EMI Shielding Effectiveness of Carbon Nanofiber Filled Poly(vinyl alcohol) Coating Materials

Author(s):  
Bang One Lee ◽  
Won Jun Woo ◽  
Myung-Soo Kim
RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36498-36506 ◽  
Author(s):  
Sandeep K. Marka ◽  
Bashaiah Sindam ◽  
K. C. James Raju ◽  
Vadali V. S. S. Srikanth

An excellent electromagnetic interference shielding effectiveness of ∼19.5 dB was measured for a 1 mm thick flexible few-layered graphene (FLG)/PVA composite sheet owing to the formation of network-like features by FLG in the PVA matrix.


2007 ◽  
Vol 7 (2) ◽  
pp. 549-554
Author(s):  
Yonglai Yang ◽  
Mool C. Gupta ◽  
Kenneth L. Dudley ◽  
Roland W. Lawrence

Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4–18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.


2007 ◽  
Vol 7 (2) ◽  
pp. 549-554 ◽  
Author(s):  
Yonglai Yang ◽  
Mool C. Gupta ◽  
Kenneth L. Dudley ◽  
Roland W. Lawrence

Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4–18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Rongliang Yang ◽  
Xuchun Gui ◽  
Li Yao ◽  
Qingmei Hu ◽  
Leilei Yang ◽  
...  

AbstractLightweight, flexibility, and low thickness are urgent requirements for next-generation high-performance electromagnetic interference (EMI) shielding materials for catering to the demand for smart and wearable electronic devices. Although several efforts have focused on constructing porous and flexible conductive films or aerogels, few studies have achieved a balance in terms of density, thickness, flexibility, and EMI shielding effectiveness (SE). Herein, an ultrathin, lightweight, and flexible carbon nanotube (CNT) buckypaper enhanced using MXenes (Ti3C2Tx) for high-performance EMI shielding is synthesized through a facile electrophoretic deposition process. The obtained Ti3C2Tx@CNT hybrid buckypaper exhibits an outstanding EMI SE of 60.5 dB in the X-band at 100 μm. The hybrid buckypaper with an MXene content of 49.4 wt% exhibits an EMI SE of 50.4 dB in the X-band with a thickness of only 15 μm, which is 105% higher than that of pristine CNT buckypaper. Furthermore, an average specific SE value of 5.7 × 104 dB cm2 g−1 is exhibited in the 5-μm hybrid buckypaper. Thus, this assembly process proves promising for the construction of ultrathin, flexible, and high-performance EMI shielding films for application in electronic devices and wireless communications.


2021 ◽  
Vol 412 ◽  
pp. 177-184
Author(s):  
Farid Kara ◽  
Fadhéla Otmane ◽  
Samir Bellal ◽  
Amira Djenet Guerfi ◽  
S. Triaa

An electromagnetic interferences (EMI) shielding is a material that attenuates radiated electromagnetic energy. Polymer nanocomposites is a class of materials that combine electrical, thermal, dielectric, magnetic and/ or mechanical properties, which are useful for the suppression of electromagnetic interferences. In this work, we looked over the effectiveness of the electromagnetic interferences shielding of polymer-based nanocomposites. These are thin samples of epoxy resin strengthened with nanostructured Cu powders. Nanostructured Cu powders were obtained by mechanical milling using the high-energy RETSCH PM400 ball mill (200 rpm). A powder sampling was conducted after 3h, 6h, 12h, 24h, 33h, 46h and 58h milling for characterization requirements. XRD analysis via the Williamson-Hall method shows that the mean crystallites size decreases from 151.6 nm (pure Cu phase) to 13.8 nm (58 h milling). Simultaneously, the lattice strain increases from 0.1% (pure Cu phase) to 0.59% (58 h milling). The elaboration of thin samples was performed by mixing a vol./3 fractions of nanostructured Cu powder, epoxy resin and hardener. Thin slabs of 1 mm thickness were moulded for use in a rectangular wave-guide. The EMI shielding experimental involved a two ports S parameters cell measurement made of R120 metallic wave-guides of rectangular section (19.05x9.525 mm2) and operational over the frequency band of 9.84 to 15 GHz associated to a network analyser. Obtained results show moderate EMI shielding effectiveness for the milled Cu-based slabs.


2016 ◽  
Vol 52 ◽  
pp. 79-87 ◽  
Author(s):  
Muhammad Hanif Zahari ◽  
Beh Hoe Guan ◽  
Ee Meng Cheng ◽  
Muhammad Farham Che Mansor ◽  
Kean Chuan Lee

Sign in / Sign up

Export Citation Format

Share Document